Maximally-mutable Laurent polynomials

Abstract:

In this talk I will describe a special class of Laurent polynomials, which we call “maximally-mutable”. These Laurent polynomials arise naturally in the study of Fano manifolds via mirror symmetry. In particular, I will explain why in dimension two, the rigid maximally-mutable Laurent polynomials correspond exactly, under mirror symmetry, with the 10 deformation families of smooth del Pezzo surfaces. A similar result holds in dimension 3, where the rigid maximally-mutable Laurent polynomials supported on a reflexive polytope correspond precisely with the 98 deformation families of smooth Fano 3-folds with very ample -K.